Chemistry I Midterm Exam

15 Nov, 2013

Periodic Table of Elements

1 H 1.0																	2 He 4.0
3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
6.9	9.0					10.8	12.0	14.0	16.0	19.0	20.2						
11 Na 23.0	12 Mg 24.3											13 Al 27.0	14 Si 28.1	15 P 31.0	16 S 32.1	17 Cl 35.5	18 Ar 40.0
19 K 39 1	20 Ca 40 1	21 Sc 45.0	22 Ti 47 9	23 V 50.9	24 Cr 52.0	25 Mn 54 9	26 Fe 55.8	27 Co 58 9	28 Ni 58 7	29 Cu 63 5	30 Zn 65.4	31 Ga 69 7	32 Ge 72.6	33 As 74 9	34 Se 79.0	35 Br 79.9	36 Kr 83.8
37 Rb 85.5	38 Sr 87.6	39 Y 88.9	40 Zr 91.2	41 Nb 92.9	42 Mo 95.9	43 Tc (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 50 51 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn

Constants

 $e = 1.60 \times 10^{-19} \text{ C}$ mass of electron $m_{\text{e}} = 9.11 \times 10^{-31} \text{ kg}$ Plank's constant $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$ $c = 3.00 \times 10^8 \text{ m} \cdot \text{s}^{-1}$ Avogadro's constant $N_{\text{A}} = 6.02 \times 10^{23} \text{ mol}^{-1}$ Rydberg constant $R = 3.29 \times 10^{15} \text{ Hz}$

- 1. The kinetic energy of an electron that is emitted from the surface of a potassium sample by a photon is 1.80×10^{-19} J. The work function of potassium is 2.29 eV.
 - (a) What is the frequency of the radiation that caused photoejection of the electron? (6%)
 - (b) What is the type of this electromagnetic radiation, UV, visible, or IR? (2%)
 - (c) The ionization energy of potassium is 418 kJ⋅mol⁻¹. Is this value equal to the work function of potassium? Why? (4%)
- (a) List all the valid values of the magnetic quantum number for the 6f-subshell. (2%)

- (b) Indicate the mistakes of the quantum number set for an atom: $\{n, l, m_l, m_s\}$ = $\{3, 0, 1, -1\}$. (4%)
- 3. Answer the following questions briefly:
 - (a) What is the "inert-pair effect" on heavy atoms? (4%)
 - (b) What is a "radical"? (4%)
 - (c) What are "parallel spins"? (for electrons) (4%)
 - (d) What is the "dissociation energy" of a bond? (4%)
 - (e) Is this true that Al³⁺ has greater polarizing power to distort the electron cloud of a neighboring anion than Cs⁺? Why? (4%)
- 4. We have an 1-D box of length 300 pm in which there is an electron with quantum number n = 3. What is the probability of finding this electron in a small region at a distance 25 pm from the left wall of the box <u>relative to</u> the probability of finding it in the same small region located at the center of the box? (5%)
- Write the Lewis structures that <u>obey the octet rule</u>, and determine the formal charge on each atom of the following molecules/ions: (a) P₄; (b) HSO₄⁻; (c) N₃⁻; (d) NH₃BF₃. (5% each)
- 6. Write the Lewis structure, VSEPR formula, molecular shape, and bond angles for each of the following species: (a) I_3^- ; (b) POCl₃; (c) IO_3^- . (5% each)
- 7. (a) The ground-state electron configuration of the ion H_2^{n-} is $\sigma_{1s}^2 \sigma_{1s}^{*2}$. What is the charge on the ion? And what is its bond order? (2%)
 - (b) The ground-state electron configuration of the ion $O_2^{n_+}$ is $\sigma_{2s}^2 \sigma_{2s}^{*2} \sigma_{2p}^2 \pi_{2p}^4$. What is the value of n? What is its bond order? Is it paramagnetic? (3%)
- 8. (a) Draw a molecular orbital energy-level diagram for N₂ and label the energy levels according to the type of orbitals from which they are formed , whether they are σ- or π-orbitals, and whether they are bonding or antibonding. (4%)

- (b) Draw the energy-level diagram for NO^+ . (4%)
- (c) In the molecular orbitals of NO⁺, will the electrons have a higher probability of being at N or O? Why? (2%)
- 9. Draw the molecular orbital energy-level diagram for the π -orbitals of benzene and label the HOMO and LUMO. (7%)

Answers

1.(a) 1 eV = 1.60×10^{-19} C × 1 V = 1.60×10^{-19} J ; 2.29 eV = 3.66×10^{-19} J ; $hv = (1.80 \times 10^{-19} + 3.66 \times 10^{-19})$; $v = 8.24 \times 10^{14}$ Hz (b) $v = 8.24 \times 10^{14}$ Hz ; $\lambda = 3.64 \times 10^{-7}$ m ; <u>UV</u> (c) work function 2.29 eV = 3.66×10^{-19} J \Rightarrow 220 kJ·mol⁻¹ ; <u>different to the ionization</u> <u>energy</u> (2%)

In photoelectric process, the electron is ejected from <u>solid metal</u>. But in determining the ionization energy, the electron is from an atom in <u>gas phase</u>. (2%)

```
2.(a)

3, 2, 1, 0, -1, -2, -3

(b)

when l = 0, m_l cant not be 1 (2%)

m_s can not be -1 (2%)
```

3.(a)

Heavy atoms may form cations two units lower in charge than expected from the group number.

(b)

A species have at least one unpaired electron.

(c)

Electrons with spins aligned in the same direction. (*or* with the same spin quantum number m_s)

(d)

The energy required for breaking a chemical bond <u>homolytically</u>. (文字說明或化學 反應式中未表現 homolytically 扣 2%)

(e)

 Al^{3+} is more highly charged (2%), and has smaller ionic radius. (2%)

$$\psi(x) = A \sin\left(\frac{n\pi x}{L}\right) = A \sin\left(\frac{3\pi x}{300}\right)$$

ratio of probability $= \frac{\psi^2(25)}{\psi^2(150)} = \frac{A^2 \sin^2(\pi/4)}{A^2 \sin^2(3\pi/2)} = \frac{(\sqrt{2}/2)^2}{(-1)^2} = 0.5$

5.

配分: Lewis structure 2%; formal charges 3% 錯一個扣 1%

6.

(a) The I_3^- molecule is predicted to be linear, so the I—I—I angle should equal 180°. AX₂E₃

(b) The POCl₃ molecule is tetrahedral. All bond angles should be 109.5° . AX₄

(c) The shape of IO_3^- will be a trigonal pyramid, so the O—I—O bond angles should be less than 109.5°. AX₃E

配分: Lewis structure 2%; VSEPR formula、molecular shape、bond angle 各 1%

7.(a) The charge on H_2^{n-} is -2 and the bond order is 0.

(b)
$$n = 2$$
. BO = 3. No.

4.

The energy level diagram for N_2 is as follows:

(b)

Energy level diagram for NO^+

Orbitals on N

Orbitals on O

(c) The electrons in the bonding orbitals will have a higher probability of being at O because O is more electronegative and its orbitals are lower in energy.

8.

配分: <u>energy-level diagram</u> 5%; <u>HOMO</u>、<u>LUMO</u>標示各 1%